1. If
$$I_n = \int_0^{\frac{\pi}{4}} tan^n x dx$$
 where n is a positive integer then $I_{10} + I_8$ is equal to
(A) 9
(B) $\frac{1}{7}$
(C) $\frac{1}{8}$
(D) $\frac{1}{9}$
2. The value of $\int_0^{4042} \frac{\sqrt{x} dx}{\sqrt{x} + \sqrt{4042 - x}}$ is equal to
(A) 4042
(B) 2021
(C) 8084
(D) 1010
3. The area of the region bounded by $y = \sqrt{16 - x^2}$ and X - axis is
(A) 8 sq units
(B) 20 π sq units
(C) 16 π sq units
(D) 256 π sq units
(D) 256 π sq units
(D) 256 π sq units
4. If the area of the ellipse is $\frac{x^2}{25} + \frac{y^2}{\lambda^2} = 1$ is 20π sq units, then λ is
(A) ± 4
(B) ± 3
(C) ± 2
(D) ± 1
5. Solution of Differential equation xdy-ydx = 0 represents
(A) A rectangular hyperbola
(B) Parabola whose vertex is at origin
(C) Straight line passing through origin
(D) A circle whose center is origin
6. The number of solutions of $\frac{dy}{dx} = \frac{y+1}{x-1}$ when $y(1) = 2$ is
(A) Three
(B) One
(C) Infinite
(D) Two

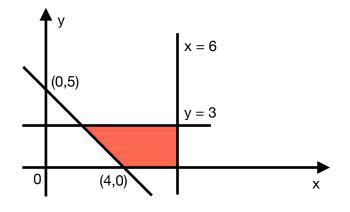
7. A vector \vec{a} makes equal acute angles on the coordinate axis. Then the projection of vector

$$\vec{b} = 5\hat{i} + 7\hat{j} - \hat{k} \text{ on } \vec{a} \text{ is}$$
(A)
$$\frac{11}{15}$$
(B)
$$\frac{11}{\sqrt{3}}$$
(C)
$$\frac{4}{5}$$
(D)
$$\frac{3}{5\sqrt{3}}$$

- 8. The diagonals of a parallelogram are the vectors $3\hat{i} + 6\hat{j} 2\hat{k}$ and $-\hat{i} 2\hat{j} 8\hat{k}$ then the length of the shorter side of parallelogram is
 - (A) $2\sqrt{3}$
 - (B) $\sqrt{14}$
 - (C) $3\sqrt{5}$
 - (D) $4\sqrt{3}$
- 9. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} + \vec{b}$ makes an angle 60° with \vec{a} then
 - (A) $|\overrightarrow{a}| = 2|\overrightarrow{b}|$
 - (B) $2 |\overrightarrow{a}| = |\overrightarrow{b}|$
 - (C) $|\vec{a}| = \sqrt{3} |\vec{b}|$
 - (D) $\sqrt{3} | \overrightarrow{a} | = | \overrightarrow{b} |$
- 10. If the area of the parallelogram with \vec{a} and \vec{b} as two adjacent sides is 15 sq units then the area of the parallelogram having $3\vec{a} + 2\vec{b}$ and $\vec{a} + 3\vec{b}$ as two adjacent sides in sq units is
 - (A) 45
 - (B) 75
 - (C) 105
 - (D) 120
- 11. The equation of the line joining the points (-3,4,11) and (1,-2,7) is

(A)
$$\frac{x+3}{2} = \frac{y-4}{3} = \frac{z-11}{4}$$

(B) $\frac{x+3}{-2} = \frac{y-4}{3} = \frac{z-11}{2}$
(C) $\frac{x+3}{-2} = \frac{y+4}{3} = \frac{z+11}{4}$
(D) $\frac{x+3}{2} = \frac{y+4}{-3} = \frac{z+11}{2}$


12. The angle between the lines whose direction cosines are

$$\left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}\right) and \left(\frac{\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2}\right) is$$
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$

13. Is a plane meets the coordinate axes at A, B and C in such a way that the centroid of triangle ABC is at the point (1,2,3) then the equation of the plane is

(A)
$$\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = -1$$

(B) $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$
(C) $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = \frac{1}{3}$
(D) $\frac{x}{1} - \frac{y}{2} + \frac{z}{3} = -1$

- 14. The area of the quadrilateral ABCD, when A(0,4,1), B(2,3,-1), C(4,5,0) and D(2,6,2) is equal to (A) 9 sq units
 - (B) 18 sq units
 - (C) 27 sq units
 - (D) 81 sq units
- 15. The shaded region is the solution set of the inequalities

(A) $5x + 4y \ge 20, x \le 6, y \ge 3, x \ge 0, y \ge 0$ (B) $5x + 4y \le 20, x \le 6, y \le 3, x \ge 0, y \ge 0$ (C) $5x + 4y \ge 20, x \le 6, y \le 3, x \ge 0, y \ge 0$ (D) $5x + 4y \ge 20, x \ge 6, y \le 3, x \ge 0, y \ge 0$

- 16. Given that A and B are two events such that $P(B) = \frac{3}{5}$, $P(A/B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$
 - then P(A) = (A) $\frac{3}{10}$ (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $\frac{3}{5}$
- 17. If A, B and C are three independent events such that P(A) = P(B)=P© = P then P(at least two of A, B, C occur) =
 - (A) $P^3 3P$
 - (B) $3P 2P^2$
 - (C) $3P^2 2P^3$
 - (D) $3P^2$
- 18. Two dice are thrown . If it is known that the sum of numbers on the dice was less than 6 the probability of getting a sum as 3 is
 - (A) $\frac{1}{18}$ (B) $\frac{5}{18}$ (C) $\frac{1}{5}$ (D) $\frac{2}{5}$
- 19. A car manufacturing factory has two plants X and Y. Plant X manufactures 70% of the cars and plant Y manufactures 30% of the cars. 80% of cars at plant X and 90% of cars at plant y arrested as standard quality. A car is chosen at random and is found to be of standard quality. The probability that it has come from plant X is
 - (A) $\frac{56}{73}$ (B) $\frac{56}{84}$ (C) $\frac{56}{83}$ (D) $\frac{56}{79}$
- 20. In a certain town 65% families own cellphones, 15000families own scooter and 15% families own both. Taking into consideration that the families own at least one of the two, the total number of families in the town is

- (A) 20000
- (B) 30000
- (C) 40000
- (D) 50000

21. A and B are non-singleton sets and n(A X B) = 35. If $B \subset A$ then $n(A)C_{n(B)} =$

- 1. 28
- 2. 35
- 3. 42
- 4. 21

22. Domain of f(x) = $\frac{x}{1 - |x|}$ is

- (A) R [-1,1]
- (B) (−∞,1)
- (C) $(-\infty, 1) \cup (0, 1)$
- (D) R-[-1,1]
- 23. The value of $\cos 1200^\circ + \tan 1485^\circ$ is
 - (A) 1/2
 - (B) 3/2
 - (C) -3/2
 - (D) -1/2
- 24. The value of tan 1° tan 2° tan 3° tan 89° is
 - (A) 0
 - (B) 1
 - (C) 1/2
 - (D) -1

25. If
$$\left(\frac{1+i}{1-i}\right)^x = 1$$
 then

- (A) x = 4n + 1; $n \in N$
- (B) x = 2n + 1; $n \in N$
- (C) x = 2n; $n \in N$
- (D) x = 4n; $n \in N$
- 26. The cost and revenue functions of a product are given by c(x) = 20x + 4000 and R(x) = 60x + 2000 respectively where x is the number of items produced and sold. The value of x to earn profit is
 - (A) >50
 - (B) >60
 - (C) >80
 - (D) >40
- 27. A student has to answer 10 questions, choosing at least 4 from each of the parts A and B. If there are 6 questions in part A and 7 in part B, then the number of ways can the student choose 10 questions is
 - (A) 256
 - (B) 352
 - (C) 266

(D) 426

28. If the middle term of the A.P. is 300 then the sum of the first 51 terms is

- (A) 15300
- (B) 14800
- (C) 16500
- (D) 14300

29. The equation of straight line which passes through the point $(acos^3\theta, asin^3\theta)$ and

perpendicular to $xsec\theta + ycosec\theta = a$ is

(A)
$$\frac{x}{a} + \frac{y}{a} = a\cos\theta$$

- (B) $x\cos\theta y\sin\theta = a\cos2\theta$
- (C) $xcos\theta + ysin\theta = acos2\theta$
- (D) $xcos\theta ysin\theta = -acos2\theta$
- 30. The mid points of the sides of a triangle are (1,5,-1) (0,4,-2) and (2,3,4) then centroid of the triangle
 - (A) (1,4,3)

(B)
$$(1,4,\frac{1}{3})$$

- (C) (-1,4,3)
- (D) $(\frac{1}{3}, 2, 4)$

31. Consider the following statements

Statement 1 :
$$\lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a}$$
 is 1 (where $a + b + c \neq 0$)
Statement 2 :
$$\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x + 2}$$
 is $\frac{1}{4}$

- (A) Only statement 2 is true
- (B) Only statement 1 is true
- (C) Both statements 1 and 2 are true
- (D) Both statements 1 and 2 are false

32. If a and b are fixed non-zero constants then the derivative of $\frac{a}{x^4} - \frac{b}{x^2} + cosx$ is ma+nb - p

where

(A)
$$m = 4x^2; n = \frac{-2}{x^3}; p = sinx$$

(B) $m = \frac{-4}{x^5}; n = \frac{2}{x^3}; p = sinx$
(C) $m = \frac{-4}{x^5}; n = \frac{-2}{x^3}; p = -sinx$

(D)
$$m = 4x^3; n = \frac{2}{x^3}; p = -\sin x$$

33. The standard deviation of the numbers 31,32,33......46,47 is

(A)
$$\sqrt{\frac{17}{12}}$$

(B) $\sqrt{\frac{47^2 - 1}{12}}$
(C) $2\sqrt{6}$
(D) $4\sqrt{3}$
34. If P(A) = 0.59, P(B) = 0.30 and $P(A \cap B) = .21$ then $P(A' \cap B') =$
(A) 0.11
(B) 0.38
(C) 0.32
(D) 0.35
35. F: R -> R defined by $f(x) = \begin{cases} 2x; x > 3\\ x^2; 1 < x \le 3 \text{ then } f(-2) + f(3) + f(4) \text{ is } 3x; x \le 1 \end{cases}$
(A) 14
(B) 9
(C) 5
(D) 11
2x

36. Let A = { x : x $\in R$; x is not a positive integer} Define f : A -> R as f(x) = $\frac{2x}{x-1}$ then f is

- (A) Injective but not surjective
- (B) Surjective but not injective
- (C) Bijective
- (D) Neither injective nor surjective

37. The function $f(x) = \sqrt{3}sin 2x - cos 2x + 4$ is one - one in the interval

(A)
$$\left[\frac{-\pi}{6}, \frac{\pi}{3}\right]$$

(B) $\left[\frac{\pi}{6}, \frac{-\pi}{3}\right]$
(C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
(D) $\left[\frac{-\pi}{6}, \frac{-\pi}{3}\right]$

38. Domain of the function $f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$ where [x] is the greatest integer $\leq x$ is

(A) $(-\infty, -2) \cup [4,\infty]$ (B) $(-\infty, -2) \cup [3,\infty]$ (C) $(-\infty, -2) \cup [4,\infty]$

(D) $(-\infty, -2) \cup [3,\infty]$
39. $cos \left cot^{-1} \left(-\sqrt{3} + \frac{\pi}{6} \right) \right =$
(A) 0 (B) 1
(C) $\frac{1}{\sqrt{2}}$
$\sqrt{2}$
(D) -1
$40. \tan^{-1}\left[\frac{1}{\sqrt{3}}\sin\frac{5\pi}{2}\right]\sin^{-1}\left[\cos\left(\sin^{-1}\frac{\sqrt{3}}{2}\right)\right] =$
(A) 0
(B) $\frac{\pi}{6}$
0
(C) $\frac{\pi}{3}$
(D) π
41. If $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$ then (AB)' is equal to
$(A) \begin{bmatrix} -3 & -2\\ 10 & 7 \end{bmatrix}$
(B) $\begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}$
(C) $\begin{bmatrix} -3 & 7\\ 10 & 2 \end{bmatrix}$
(D) $\begin{bmatrix} -3 & 7\\ 10 & -2 \end{bmatrix}$

42. Let M be 2 X 2 symmetric matrix with integer entries, then M is invertible if

- (A) The first column of M is the transpose second row of M
- (B) The second row of M is the transpose of first column of M
- (C) M is a diagonal matrix with non zero entries in the principal diagonal
- (D) The product of entries in the principal diagonal os M is the product of entries in the other diagonal
- 43. If A and B are matrices of order 3 and |A| = 5, |B| = 3 then |3AB| is
 - (A) 425
 - (B) 405
 - (C) 565
 - (D) 585

44. If A and B are invertible matrices then which of the following is not correct ?

(A) $adjA = |A|A^{-1}$

(B)
$$det(A^{-1}) = [det(A)^{-1}]$$

(C) $(AB)^{-1} = B^{-1}A^{-1}$
(D) $(A + B)^{-1} = B^{-1} + A^{-1}$
45. If $f(x) = \begin{vmatrix} cosx & 1 & 0 \\ 0 & 2cosx & 3 \\ 0 & 1 & 2cosx \end{vmatrix}$ then $\lim_{x \to \pi} f(x) = \begin{bmatrix} A \\ 0 \\ 0 \end{bmatrix}$
(A) -1
(B) 1
(C) 0
(D) 3
46. If $x^3 - 2x^2 - 9x + 18 = 0$ and $A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & x & 6 \\ 7 & 8 & 9 \end{vmatrix}$ then the maximum value of A is
(A) 96
(B) 36
(C) 24
(D) 120
47. At $x = 1$, the function $f(x) = \begin{cases} x^3 - 1, 1 < x < \infty \\ x - 1, -\infty < x \le 1 \end{cases}$ is
(A) Continuous and differentiable
(B) Continuous and offerentiable
(C) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(C) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(C) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(D) Discontinuous and non-differentiable
(D) Discontinuous and a differentiable
(D) Discontinuous and non-differentiable
(D) Discontinuous and a differentiable
(D) $x^3(1 + logx) + ax^{a-1}$
(D) $-xcos 2x^2$
49. For constant a, $\frac{d}{dx}(x^4 + x^4 + a^4 + a^4)$ is
(A) $x^3(1 + logx) + ax^{a-1} + a^3 loga$
(C) $x^3(1 + logx) + ax^{a-1} + a^3 loga$
(C) $x^3(1 + logx) + a^a(1 + logx)$
(D) $x^3(1 + logx) + a^a(1 + logx) + ax^{a-1}$
50. Consider the following statements
Statement 1: $y = log_{10}x + log_{ex} then \frac{dy}{dx} = \frac{log_{10}e}{logx} + \frac{1}{x}$
Statement 2: $\frac{d}{dx}(log_{10}x) = \frac{logx}{log10}$ and $\frac{d}{dx}(log_{ex}x) = \frac{logx}{loge}$

- (A) Statement 1 is true, Statement 2 is false
- (B) Statement 1 is false ; statement 2 is true
- (C) Both statements 1 and 2 are true
- (D) Both statements 1 and 2 are false

51. If the parametric equation of a curve is given by $x = cos\theta + logtan\frac{\theta}{2}$ and $y = sin\theta$ then

the points for which
$$\frac{dy}{dx} = 0$$
 are given by
(A) $\theta = \frac{n\pi}{2}, n \in z$
(B) $\theta = (2n+1)\frac{\pi}{2}, n \in z$
(C) $\theta = (2n+1)\pi, n \in z$
(D) $\theta = n\pi, n \in z$
52. If $y = (x-1)^2(x-2)^3(x-3)^5$ then $\frac{dy}{dx}$ at $x = 4$ is equal to
(A) 108
(B) 54
(C) 36
(D) 516
53. A particle starts from rest and its angular displacement (in radians) is given by $\theta = \frac{t^2}{20} + \frac{t}{5}$.

If the angular velocity at the end of t=4 is k , then the value of 5K is

- (A) 0.6
- (B) 5
- (C) 5K
- (D) 3

54. If the parabola $y = \alpha x^2 - 6x + \beta$ passes through the point (0,2) and has its tangent at

- $x = \frac{3}{2}$ parallel to X axis then
- (A) $\alpha = 2, \beta = -2$
- (B) $\alpha = -2, \beta = 2$
- (C) $\alpha = 2, \beta = 2$

(D)
$$\alpha = -2, \beta = -2$$

55. The function $f(x) = x^2 - 2x$ is strictly decreasing in the interval

- (A) $(-\infty, 1)$
- (B) (1,∞)
- (C) R
- (D) $(-\infty,\infty)$

56. The maximum slope of the curve $y = -x^3 + 3x^2 + 2x - 27$ is

- (A) 1
- (B) 23

(C) 5
(D) -23
57.
$$\int \frac{x^3 sin(tan^{-1}(x^4))}{1+x^8} dx \text{ is equal to}$$
(A) $\frac{-cos(tan^{-1}(x^4))}{4} + C$
(B) $\frac{cos(tan^{-1}(x^4))}{4} + C$
(C) $\frac{-cos(tan^{-1}(x^3))}{3} + C$
(D) $\frac{sin(tan^{-1}(x^4))}{4} + C$
58. The value of $\int \frac{x^2 dx}{\sqrt{x^6 + a^6}}$ is equal to
(A) $log | x^3 + \sqrt{x^6 + a^6} | + C$
(B) $log | x^3 - \sqrt{x^6 + a^6} | + C$
(C) $\frac{1}{3} log | x^3 - \sqrt{x^6 + a^6} | + C$
(D) $\frac{1}{3} log | x^3 - \sqrt{x^6 + a^6} | + C$
59. The value of $\int \frac{xe^x dx}{(1+x)^2}$ is equal to
(A) $e^x(1+x) + C$
(B) $e^x(1+x^2) + C$
(C) $e^x(1+x)^2 + C$
(D) $\frac{e^x}{1+x} + C$
60. The value of $\int e^x \left[\frac{1+sinx}{1+cosx} \right] dx$ is equal to
(A) $e^x tan \frac{x}{2} + C$
(B) $e^x tan x + C$
(C) $e^x(1+sinx) + C$
(D) $e^x(1+sinx) + C$